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Abstract 63 

Cancer of unknown primary (CUP) constitutes a group of metastatic cancers in which 64 

standardized clinical investigations fail to identify a tissue of origin (TOO). Gene-expression 65 

profiling (GEP) has been used to resolve TOO, and DNA sequencing to identify potential 66 

targeted treatments; however, these methods have not been widely applied together in CUP 67 

patients. To assess the diagnostic utility of DNA and RNA tests for TOO classification, we 68 

applied GEP classification and/or gene-panel DNA sequencing in 215 CUP patients. Based on a 69 

retrospective review of pathology reports and clinical data, 77% of the cohort were deemed 70 

True-CUPs (T-CUP). Among the remaining cases, a latent primary diagnosis (10%) (LP-CUP) 71 

or TOO was highly suspected based on combined clinicopathological data (13%) (histology-72 

resolved CUP, HR-CUP). High-medium confidence GEP classifications were made for 80% of 73 

LP/HR-CUPs, and these classifications were consistent with a pathologist-assigned diagnosis in 74 

94% of cases, while only 56% of T-CUPs had high-medium confidence predictions. The 75 

frequency of somatic mutations in cancer genes was similar to 2,785 CUPs from AACR GENIE 76 

Project. DNA features, GEP classification, and oncovirus detection assisted making a TOO 77 

diagnosis in 37% of T-CUPs. Gene mutations and mutational signatures of diagnostic utility 78 

were found in 31% T-CUPs. GEP classification was useful in 13% of cases and viral detection in 79 

4%. Among resolved T-CUPs, lung and biliary were the most frequently identified cancer types, 80 

while kidney cancer represented another minor subset. Multivariate survival analysis showed 81 

that unresolved T-CUPs had poorer overall survival than LP/HR-CUPs (Hazard ratio=1.9, 95% 82 

CI 1.1 − 3.2, p=0.016), while the risk of death was similar in genomically-resolved T-CUPs and 83 

LP/HR-CUPs. In conclusion, combining DNA and RNA profiling with clinicopathological data 84 

supported a putative TOO diagnosis in over a third of T-CUPs. DNA sequencing benefited T-85 

CUP tumors with atypical transcriptional patterns that hindered reliable GEP classification.  86 
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Introduction 91 

Cancer of unknown primary (CUP) represents 1-3% of all cancer diagnoses 1. It has a 92 

notoriously poor outcome, and in Australia, despite being the 14th most common 93 

diagnosis is the 6th most common cause of cancer related death 2. In the absence of a 94 

known tissue of origin (TOO), most CUP patients have historically been treated with 95 

empirical chemotherapy that is non-durable in most cases 3. Molecularly targeted 96 

treatments and immunotherapies may improve the survival outcome for some CUP 97 

patients, although drug access can still be challenging without confirming a TOO 98 

diagnosis. Furthermore, a CUP diagnosis brings a heavy psychosocial burden, as 99 

patients struggle with the absence of a specific diagnosis leading to feelings of high 100 

uncertainty 4. Therefore, a combination of improved diagnostic and treatment options for 101 

people with CUP is urgently needed. 102 

 103 

The guidelines for a CUP diagnosis are currently based on standardized gender-104 

appropriate histopathological and clinical investigations, as described by the European 105 

Society of Medical Oncology (ESMO) 5. Genomic tests, including gene expression 106 

profiling (GEP) and DNA methylation analysis, have also been described for making a 107 

TOO diagnosis, and some of these tests are commercially available. These classifiers 108 

have an accuracy of 83 to 94% when tested on known primary and metastatic tumors 6-109 

10 and are superior to immunohistochemistry 11,12. The diagnostic utility of molecular 110 

classifiers has been validated when a latent primary can be found (LP-CUP), in which a 111 
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primary tumor becomes known in time or through alignment with IHC and other 112 

clinicopathological information 6,9,11-13. However, despite the potential diagnostic value 113 

of these molecular tests, their clinical utility is questioned. While retrospective and non-114 

randomized studies applying site-directed therapies based on predicted TOO have 115 

shown survival benefits 14,15, two randomized clinical trials showed no improvements in 116 

patient outcomes 16,17. As such, the level of recommendation for these tests is low under 117 

current guidelines 5. 118 

 119 

DNA mutational profiling has also been explored in CUP 18-22. The primary goal of these 120 

studies has been to identify actionable mutations to direct targeted therapies with 121 

clinically actionable mutations identified in 30-85% of CUP cases 18-22. However, 122 

mutational profiling also provides insight into the TOO, given that certain mutational 123 

processes and the prevalence of cancer driver mutations can be cancer type-dependent 124 

18. The availability of large amounts of mutation data in public data repositories enables 125 

the interpretation of mutations and mutational signatures found in CUP tumors by a 126 

priori knowledge of the frequency and specificity across known cancer types 23-27. Not 127 

surprisingly, the integration of genomics with histology to resolve CUP diagnosis is 128 

making its way into clinical practice 28.  129 

 130 

While GEP or mutation profiling of CUP has been described independently in previous 131 

studies, few studies have considered the diagnostic utility of these assays benchmarked 132 

against clinicopathological review. Here we describe the application of GEP and 133 
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targeted DNA sequencing in a CUP series recruited through a national study (Solving 134 

Unknown Primary Cancer: SUPER). Starting from a retrospective review of the 135 

available clinicopathological data, we firstly classified CUP cases based on a degree of 136 

certainty of a single site TOO diagnosis. We then assessed the potential additive 137 

diagnostic value of GEP and DNA sequencing in these patient groups. We also 138 

compared overall survival differences and the frequency of potential targeted treatments 139 

in the CUP groups based on whether genomics and/or clinicopathological review had 140 

assisted in resolving a TOO diagnosis. We used the observations from this study to 141 

support the use of genomics data in the diagnostic workup of CUP patients and to 142 

further characterize CUP disease characteristics. 143 

 144 

Methods  145 

Patient cohort 146 

CUP patients were recruited to the SUPER study from 11 Australian sites with informed 147 

patient consent under an approved protocol of the Peter MacCallum Cancer Centre 148 

(PMCC) human research ethics committee (HREC protocol: 13/62).  149 

Eligibility criteria for patient inclusion in the study were: 1. presenting with carcinoma of 150 

no confirmed primary site and who had a preliminary diagnostic workup, including, but 151 

not limited to; a detailed clinical assessment; a CT scan of the chest, abdomen, and 152 

pelvis; pathological review of tumor tissue; and, other gender-appropriate diagnostic 153 

tests; 2. were yet to commence treatment, or had commenced treatment no more than 154 

six months prior to recruitment; and 3. could read and write in English, and provide 155 
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written informed consent. Exclusion criteria included patients under 18 years of age, 156 

who had a poor ECOG performance status (ECOG>=3) or uncontrolled medical or 157 

psychological conditions that may have prevented completion of study requirements. 158 

Patients were identified and referred by their treating clinician at 11 participating 159 

hospitals (Supplementary Methods).  Histopathology, clinical characteristics, diagnostic 160 

investigations, treatment history, and survival data were collected at baseline, six- and 161 

twelve-months post recruitment unless deceased or withdrawn earlier. 162 

Latent primary status was recorded by the treating clinician if a primary tumor was 163 

detected with both imaging and histopathology during the study. For study purposes, 164 

CUP patients were classified by a medical oncologist (TS) into the ESMO 165 

defined clinicopathological subsets defined as favorable and unfavorable prognosis 166 

groups, as previously described 5.  167 

 168 

CUP clinicopathological review  169 

A retrospective review of all histopathology reports and clinical data was performed by a 170 

single pathologist (OP) (Supplementary Table 1-2). A histopathology review of slides 171 

was undertaken for a subset of cases from the PMCC (n=59), including additional IHC 172 

staining if necessary and tissue was available (Supplementary Tables 1-2). Further 173 

review of the clinical data was done by a medical oncologist (LM) to concur with the 174 

pathologist. Cases were assigned a likely diagnosis where possible, or alternatively, 175 

designated as a True-CUP (T-CUP) and then subclassified using a modified version of 176 

the Memorial Sloan Kettering Cancer Center OncoTree classification system for CUPs 177 
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29. OncoTree classification included the following: undifferentiated malignant neoplasms 178 

(UDMN), poorly differentiated carcinoma (PDC), adenocarcinoma, not otherwise 179 

specified (ADNOS), neuroendocrine tumors, not otherwise specified (NETNOS), 180 

neuroendocrine carcinomas, not otherwise specified (NECNOS) and squamous cell 181 

carcinomas, not otherwise specified (SCCNOS). ADNOS were further subdivided based 182 

on cytokeratin 7 (CK7) and cytokeratin 20 (CK20) IHC staining, and in the case of CK7 183 

negative and CK20 positive staining, caudal-type homeobox 2 (CDX2) was annotated. 184 

All ADNOS CK7-CK20+ tumors in the cohort had positive IHC staining of CDX2. 185 

SCCNOS were further subclassified to "SCC p16+" based on p16INK4A (p16) IHC 186 

staining positivity, as this increases the likelihood of high-risk human papillomavirus 187 

(HPV) infection and raises the possibility of oral, uterine, cervical, or anal mucosal 188 

origin. The diagnosis for all cases was re-assessed following the NGS findings. 189 

 190 

Gene expression profiling 191 

GEP was performed using a previously described microarray-based test (CUPGuide) 18 192 

or a custom NanoString nCounter assay (NanoString Technologies Inc., Seattle, WA, 193 

USA). A detailed description of nucleic acid extraction, the NanoString assay and TOO 194 

classifier is described in Supplementary Methods. Briefly, the NanoString panel included 195 

probe sets targeting 225 genes that were differentially expressed across 18 tumor 196 

classes, endogenous control genes, and viral transcripts encoding capsid proteins for 197 

HPV16 L1, HPV18 L1, and Merkel cell polyomavirus (VP2) (Supplementary Table 3). 198 

The NanoString classifier was trained on harmonized TCGA RNA-seq data previously 199 
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described 10, representing 8,454 samples consolidated into 18 tumor classes 200 

(Supplementary Table 4). Tumor classes SCC and Neuroendocrine represented tumors 201 

sharing the respective histological features but originating from multiple tissues in 202 

training. The RNA-seq/NanoString k-nearest neighbor cross-platform classifier was 203 

validated on an independent test set of 188 metastatic tumors profiled by NanoString 204 

(see Supplementary Tables 5-6 for further details on the prediction performance and 205 

overall accuracy/sensitivity/specificity). A probability score was generated for predictions 206 

and heuristic thresholds set for classification confidence level (unclassified <0.5, low ≥ 207 

0.5 and ≤ 0.7, medium confidence >0.7 and < 0.9, high confidence ≥9 probability). 208 

 209 

Targeted DNA sequencing 210 

Targeted enrichment and DNA sequencing were performed on matched blood and 211 

tumor DNA,  capturing coding regions and exon/intron splice sites of 386 cancer-related 212 

genes (listed in Supplementary Table 7) using previously described methods 30. 213 

Alignment and variant calling were performed using the ensemble variant caller bcbio-214 

nextgen cancer somatic variant calling pipelines and R tools used for analysis. A 215 

detailed description of bioinformatics is described in Supplementary Methods. 216 

 217 

Reference mutation data and identification of putative diagnostic DNA features 218 

The AACR Project GENIE mutation data for 77,058 tumors (version 3.7.9) 23 was 219 

downloaded from the cBioPortal webpage (https://genie.cbioportal.org/) 26,27. The 220 

frequency of gene-specific mutations was assessed in tumors annotated as cancer of 221 
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unknown primary or other cancer types. Genes investigated were restricted to those 222 

included in the targeted capture panel in the current study (Supplementary Table 7). For 223 

assessment of cancer gene driver mutations, GENIE cancer classes with less than 50 224 

samples per class with genes of interest were removed from consideration, except for 225 

assessing gene fusions, where cancer classes with less than 10 samples per cancer 226 

class were removed from analysis (Supplementary Table 8).  227 

For identifying DNA features of potential diagnostic utility, the frequency of gene-wise 228 

driver mutations was calculated in 22 pre-defined cancer classes (Supplementary Table 229 

8).   Oncogenes and tumor suppressor genes (TSGs) were annotated using OncoKB 24. 230 

For assessing cancer class mutation frequency in the reference data, only truncating 231 

mutations in TSGs or hotspot mutations in both oncogenes and TSGs were used 232 

(annotated using the web portal http://www.cancerhotspots.org/) 31. Oncogenic gene-233 

fusions were restricted to those involving the genes FGFR2, FGFR3, ERG, 234 

FUS, TMPRSS2, ALK, RET, ROS1, NRG1, NTRK1, NTRK2, NTRK3, and EWSR1.  235 

Copy-number alterations were restricted to a curated set of frequently amplified cancer 236 

genes (Supplementary Table 7). Gene alteration frequencies was calculated within 237 

individual cancer classes (Supplementary Table 9).  A Fisher's exact test was then 238 

performed using the R package stats to identify genes statistically enriched for DNA 239 

alterations in individual cancer classes versus all other cancers. A post hoc adjusted 240 

test was performed using the Holm–Bonferroni method. Significance was defined as 241 

anything with an adjusted p-value <0.05 and an odds ratio (OR) greater than 1. These 242 
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significant cancers type diagnostic DNA alterations are summarized in Supplementary 243 

Tables 9-10. 244 

 245 

Survival analysis 246 

Overall survival (OS) was measured from the date of CUP diagnosis (histologically 247 

confirmed) to the date of death from any cause. Thirty-five patients had death recorded 248 

after completion of study follow-up.  Patients without a recorded death were censored 249 

based on the date of the last follow-up (12 months). Survival analysis was performed 250 

using the R package survival (v3.1-12). Kaplan-Meier estimates of OS were presented 251 

along with log-rank tests for comparison between resolved and true CUP groups. A cox 252 

proportional-hazard model was used for multivariable analysis and adjusted for ECOG 253 

(0,1,2,3), age (>60 or <60), gender, and ESMO assigned favorable and unfavorable 254 

prognosis groups. Kaplan–Meier and forest plots were produced with 255 

the survminer package (v0.4.8.999). 256 

 257 

Results 258 

Study cohort and subclassification of CUPs 259 

A total of 215 patients were recruited to the SUPER study, and a summary of baseline 260 

characteristics is shown in Table 1. Eighty-nine percent (191/215) received GEP, 93% 261 

(201/215) of patients had DNA sequencing, and 82% (177/215) received both assays 262 

(Table 1). A latent primary (LP-CUP) cancer was reported by the treating clinician 263 

during clinical follow-up in 10% (22/215) of cases based on histopathology, clinical 264 
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presentation, and/or cancer imaging. In another 13% (27/215) of cases, a likely TOO 265 

was assigned after a retrospective review of described morphology, clinical picture, and 266 

IHC staining; these cases were termed histology resolved CUP (HR-CUP). Notably, 267 

among the LP/HR-CUP cases, there was an enrichment of patients with a prior history 268 

of cancer (35%, 17/49), eight of whom likely had a recurrence of their previous disease 269 

(Supplementary Table 1).  270 

 271 

Most of the patients (166/215, 77%) were deemed to be True-CUP (T-CUP) and had 272 

sufficient IHC workup according to current ESMO guidelines 5. Additional IHC stains 273 

may have been informative in a small subset (7/166, 4%) but could not be done owing 274 

to tissue availability. The T-CUPs were classified into histomorphological subtypes using 275 

a modified version of the Memorial Sloan Kettering Cancer Center OncoTree 276 

classification (see Methods) (Supplementary Table 2). The majority of T-CUPs were 277 

adenocarcinomas (51%) or poorly differentiated carcinomas (25%) with minor subsets 278 

of SCCs (13%), undifferentiated neoplasms (7%), and neuroendocrine neoplasms (2%). 279 

The most frequently assigned cancer types for LP/HR-CUPs or CUP OncoTree 280 

classifications are summarized in Supplementary Table 11. 281 

 282 

GEP classification confidence is lower for True-CUPs than known metastatic 283 

cancers 284 

We used two GEP methods for TOO classification of 191/215 CUP tumors, where 285 

sufficient RNA was available. A previously described 18-class microarray-based 286 
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classifier (CUPGuide) was used in 20 cases 18, while a novel NanoString classifier was 287 

used in the remaining cases (Supplementary Table 1-2). The NanoString classifier was 288 

validated using an independent cohort of 188 metastatic tumors of known origin 289 

(Supplementary Table 6), achieving an overall prediction accuracy of 82.9%, increasing 290 

to 91.5% considering only high-medium confidence classifications (n=154) (Figure 1A, 291 

Supplementary Table 5.  292 

 293 

GEP TOO classification was possible for 45 LP/HR-CUPs (Figure 1B), of which 80% 294 

(36/45) had a high-medium confidence classification (Figure 1C). Three LP/HR-CUPs 295 

were considered to be outside the 18-class GEP TOO differential, including one rare 296 

ampullary tumor and two uterine tumors. Among high-medium confidence predictions 297 

within the GEP diagnostic differential, 94% (31/33) were concordant with their assigned 298 

diagnosis (Supplementary Table 1). Common high-medium confidence 299 

misclassifications observed among LP/HR-CUPs as well as the 188 known metastatic 300 

cancers included cholangiocarcinoma (1/1 and 5/11, respectively) and pancreatic 301 

adenocarcinomas (3/10 in the known metastatic group), illustrating classification 302 

difficulty among the pancreatobiliary group (Figure 1A, B).   303 

 304 

GEP TOO classification was performed on 146 T-CUPs. High-medium confidence 305 

classifications were made for only 56% (82/146) of T-CUPs (Figure 1C). The most 306 

frequent high-medium confidence classifications included SCC (32%), liver (13%), 307 

colorectal (12%), breast (10%) and lung (8.5%) (Figure 1D). A reduced proportion of 308 
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high-medium confidence classifications for T-CUPs compared to known metastatic 309 

cancers suggested T-CUPs either have an atypical transcriptional profile or potentially 310 

are cancer types outside of the GEP classifier differential.  311 

 312 

The mutation profile of the SUPER CUP cohort is consistent with other CUP 313 

cohorts   314 

DNA panel sequencing was performed for 201/215 CUP tumors and their matching 315 

germline controls. We detected mutational features including single nucleotide variants 316 

(SNVs), gene-fusions, copy-number amplifications (CNAs), SNV 96 trinucleotide 317 

mutational signatures (COSMIC v2)32, tumor mutation burden (TMB), and off-target viral 318 

DNA sequences (HPV, EBV) (Figure 2). Viral RNA transcripts detected by NanoString 319 

also supported viral status for HPV-positive tumors. 320 

 321 

At least one protein-coding mutation was found in 98.5% (198/201) of all CUPs, with a 322 

median TMB of 4.4 mutations/Mb (range 0.5-149 mutations/Mb). The most frequently 323 

mutated genes were TP53 (55%), LRP1B (20%), PIK3CA (17%), KMT2D (15%), KRAS 324 

(12%), ARID1A (11%) and SMARCA4 (11%) (Figure 2). The variant allele frequency of 325 

these mutations ranged between 16-40.5%, consistent with clonal cancer driver events 326 

when tumor purity was considered. Additionally, 8% (n=16) of the cohort had dominant 327 

Signature 4 (tobacco smoking), 5% (n=11) Signature 7 (ultra-violet light, UV) and 2% 328 

(n=4) Signature 6 (microsatellite instability, MSI). HPV16 (DNA and RNA) was detected 329 

in five cases and EBV (DNA only) in one case. 330 
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 331 

The gene-wise mutation frequency in the CUP cohort was also compared to 2,785 332 

CUPs with panel sequencing in the AACR Project GENIE database (Figure 2). The 333 

mutation profile between the study CUP and GENIE CUP cohorts was highly similar 334 

with some minor differences, including a higher frequency of KRAS mutations (12% vs. 335 

22%) among the GENIE CUPs and higher LRP1B (18% vs. 2%) mutations in the 336 

SUPER cohort; the latter explained by LRP1B not being included in MSK-IMPACT 337 

panel 33. 338 

 339 

Actionable mutations were also investigated in reference to the CUPISCO trial criteria of 340 

actionability described previously 22. Eighty-six CUP patients (40%) were matched to 341 

either a targeted therapy or immunotherapy arm of CUPISCO (Figure 2) 342 

(Supplementary Table 12).  343 

 344 

Mutation profiling and GEP can augment histopathology review  345 

We next considered the diagnostic value of DNA and RNA features, including GEP 346 

classification in combination with the histopathological review. Here we considered 347 

driver gene mutations, gene fusions, mutational signatures, oncoviruses, and high-348 

medium confidence GEP classifications only. To identify gene features with significant 349 

cancer type associations, we referenced the GENIE database (77,058 tumor samples) 350 

involving 22 solid cancer types. The potential diagnostic utility of a gene feature was 351 

determined by comparing one cancer type versus all others (Fisher exact test adjusted 352 
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p-value < 0.05 and odds-ratio (OR) >1) (Supplementary Table 10). A total of 171 genes 353 

were significantly enriched in one or more cancer types, and 90 genes were enriched in 354 

only one cancer type (Figure 3A, Supplementary Figure 1). Mutational signatures also 355 

provided cumulative evidence to support likely TOO, for example, a Signature 7 (UV) 356 

associated with skin cancer or a Signature 4 (tobacco) found in cancers of the airways, 357 

although potentially not excluding liver cancer 32.    358 

 359 

We first assessed LP/HR-CUP cases that had been assigned a single TOO prior to 360 

considering the genomics data.  Sixty-nine percent of cases (33/49) had one or more 361 

features (RNA and/or DNA) consistent with the TOO diagnosis. Both GEP classification 362 

and mutation profiling was informative in 20/33 cases, DNA features alone in 7/33, GEP 363 

alone in 5/33, and viral detection alone in 1/33 cases. The seven cases where GEP was 364 

not informative included two where GEP was not possible, four with low confidence 365 

classification, and one was a rare cancer part of the classifier differential. High-medium 366 

confidence GEP classifications were the most useful diagnostic feature (n=25) followed 367 

by gene mutations (n=24), mutational signatures (n=4), copy number amplifications 368 

(n=2), gene-fusions (n=1), and oncoviruses (n=1) (Figure 3B, Supplementary Figure 2).  369 

 370 

Examples of LP/HR-CUP diagnoses supported by genomic data included 8/10 (80%) 371 

ovarian cases with high-confidence GEP classification as well as a TP53 mutation, the 372 

latter occurring in >96% of high-grade serous ovarian cancers 34. A dominant mutation 373 

Signature 7 (UV)(n=3) and either oncogenic mutations in NRAS (melanoma OR=20.7) 374 
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or truncating NF1 mutations (melanoma OR=5.2) was consistent with cutaneous 375 

melanoma 35. High-confidence GEP prediction of gastric cancer combined with ERBB2 376 

amplification (concordant with positive HER2 IHC staining) (esophagus/stomach OR=3) 377 

and a frameshift deletion in CDH1 (esophagus/stomach OR=3) supported a diagnosis of 378 

gastric adenocarcinoma. High-confidence colorectal GEP prediction and APC mutations 379 

(colorectal OR= 77.5) were present in two cases diagnosed as colorectal 380 

adenocarcinomas 36(Supplementary Figure 2, Supplementary Table 1).  381 

 382 

A single HR-CUP (1097) had molecular features resulted in a change in classification 383 

from colorectal to T-CUP (ADNOS CK7-CK20+CDX2+). No mutations supported a 384 

colorectal origin (e.g., APC, RAS/RAF mutations), and a high-confidence GEP 385 

prediction of kidney with mutations in NF2 and SMARCA4 was identified. Confirmatory 386 

IHC staining (e.g., for PAX8) may have supported a kidney cancer diagnosis, but no 387 

tissue was available. 388 

Molecular features supported a likely single TOO diagnosis consistent with 389 

clinicopathological features in 37% (61/166) of T-CUPs (Figure 3C). DNA features 390 

supported a diagnosis in 31% (51/166) of T-CUP cases, GEP TOO classification in 13% 391 

(21/166), and viral detection in 4% (6/166).  Combined GEP classification and mutation 392 

profiling features were informative in 10% 16/166 cases (Figure 3D). Types of genomic 393 

feature supporting a diagnosis included driver gene mutations (n=36), mutational 394 

signatures (n=23), HPV16 (n=5) and EBV (n=1) viral nucleic acids, gene amplification 395 

(n=4), gene-fusions (n=3) and high-medium confidence GEP prediction (n=21) (Figure 396 
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3B). DNA features could narrow the differential diagnosis in a further 11/166 T-CUPs 397 

(7%), although a TOO assignment of a single site could not be confidently made (Figure 398 

3C). Considering the genomics data, the most frequently suspected cancer types 399 

among T-CUPs were lung (n=18, including a single pleomorphic carcinoma of the lung 400 

(LUPC)), biliary tract (n=8), breast (n=5), colorectal (n=5), HPV+ SCC (n=5) and kidney 401 

(n=4) (Figure 3E).  402 

Lung-CUP was the single largest single group among T-CUPs. Dominant mutational 403 

Signature 4 (tobacco) was found in 14 cases. Driver gene mutations associated with 404 

non-small cell lung cancer (NSCLC) included KEAP1 (Lung OR=9.8), STK11 (Lung 405 

OR=14.1), SMARCA4 (Lung OR=2.8), and KRAS (Lung OR=2.1) (Figure 3E, 406 

Supplementary Figure 1 and Supplementary Table 10). Notably, all but one putative 407 

Lung-CUP lacked TTF1 IHC staining. Among the Lung-CUPs where GEP was possible, 408 

a high-medium confidence classification of Lung was made in 5/16 cases. Two 409 

additional T-CUPs that were unresolved had high-medium lung classification, but 410 

mutation profiling was unsuccessful, and there was no other evidence to support a lung 411 

diagnosis. Three Lung-CUPs were CDX2-positive by IHC but had mutational features 412 

consistent with lung cancer, including a Signature 4 (tobacco) in all three cases. GEP 413 

was uninformative in these cases as one was classified as colorectal (0.9-confidence 414 

probability), and two were predicted SCC, a non-specific classification but potentially in 415 

keeping with lung-squamous cancer (Figure 3E, Supplementary Table 2). These CDX2+ 416 

Lung-CUPs were favored to be enteric-like lung adenocarcinomas 37. 417 

 418 
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Eight ADNOS tumors were putatively diagnosed as intrahepatic cholangiocarcinomas 419 

supported by mutations in BAP1 (cholangiocarcinoma OR=7.2) and IDH1 420 

(cholangiocarcinoma OR=32) (Figure 3E and Supplementary Table 10). Seven of these 421 

tumors presented with liver masses. These tumors lacked KRAS mutations, making a 422 

pancreatic origin less likely, given that KRAS mutations occur in approximately 90% of 423 

pancreatic adenocarcinomas (Supplementary Table 9-10) 38. Hotspot IDH1 (R132C) 424 

mutations have the highest frequency in cholangiocarcinoma (cholangiocarcinoma 425 

OR=33) but can be detected at a low frequency in melanoma (2%, melanoma OR=3.6). 426 

Similarly, FGFR2-fusions are frequently detected in intrahepatic cholangiocarcinoma 427 

(cholangiocarcinoma OR>100) 39-41, a feature that supported a cholangiocarcinoma 428 

diagnosis in two T-CUP cases (Supplementary Table 2 and 10).  429 

 430 

In four T-CUPs subsequently assigned a kidney TOO, two cases expressed PAX8 by 431 

IHC, both confirmed by high PAX8 mRNA expression (z-score > 2), and an additional 432 

case did not have PAX8 IHC performed but had high PAX8 mRNA expression. The 433 

fourth case did not have PAX8 staining or high PAX8 mRNA expression. Only two 434 

cases were classified as kidney cancer by GEP (Figure 3E). Driver mutations 435 

significantly associated with kidney cancer, and detected among kidney-CUPs, included 436 

BAP1 (kidney OR=7.6) and NF2 (kidney OR=7.2). Another case had a truncating FH 437 

mutation consistent with FH-deficient kidney cancer (kidney OR=8.1) (Supplementary 438 

Figures 1). Notably, no VHL mutations were detected, representing the most common 439 

driver gene in renal cell carcinoma (RCC) (42.5% RCC in GENIE, OR=763). Another 440 
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assigned kidney case was confirmed as a recurrence of late-onset adult Wilm's tumor 441 

by detecting a somatic FGFR1 (p.K656D) mutation in both the original primary tumor 442 

and a recurrent tumor that presented over twenty years after first diagnosis 443 

(Supplementary Table 2 and 10). 444 

 445 

Unresolved CUPs have a reduced survival outcome compared to resolved CUPs  446 

Of the 215 patients, 177 patients had recorded survival data.  Among all cases recruited 447 

to the SUPER study, the majority were classified as unfavorable according to the ESMO 448 

guidelines (137/159= 86% of T-CUP, and 39/48=81% of LP/HR-CUP, where data was 449 

available) 5 (Figure 4A). Overall, 85% of the cohort was unfavorable CUP and, as 450 

expected, these had significantly poorer overall survival (OS)- by log-rank test (p < 451 

0.001), with a median OS of 11 months compared to a median OS of 15 months for 452 

favorable CUP. Additionally, 46% of unfavorable CUP achieved 12 months of survival 453 

compared with 92% of favorable CUP (Figure 4B).  Furthermore, log-rank testing 454 

showed longer survival in LP/HR-CUPs, and T-CUPs assigned a single TOO after 455 

interpretation of the genomics data, compared with diagnostically unresolved T-CUPs 456 

(p=0.04, Figure 4C). Multivariate Cox-regression analysis, including gender, age, ECOG 457 

performance, and ESMO prognosis groups (Figure 4D), showed that T-CUPs had 458 

worse survival outcomes compared to LP/HR-CUPs (HR=1.89, 95% CI 1.13-3.2, 459 

p=0.016) while there was no significant difference between LP/HR-CUPs and resolved 460 

T-CUPs (HR=1.18, 95% CI 0.65-2.1, p=0.595).  461 

 462 
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Discussion 463 

The reported incidence of CUP has decreased in recent years 1. This is most likely due 464 

to increased awareness and standardization of investigations, including access to more 465 

specific IHC stains, improved diagnostic imaging, and the use of molecular profiling1. 466 

Consistent with other large retrospective CUP studies, we found that approximately 467 

one-quarter of CUP may be assigned a likely TOO based on a centralized 468 

histopathology review 42,43. This is similar to the recent experience of the international 469 

CUP clinical trial CUPISCO, where ~20% of patients had a single primary site diagnosis 470 

supported by available evidence or was TOO was strongly suspected 44. In the current 471 

study, we have shown that incorporating DNA and RNA tests may help to resolve more 472 

than a third of T-CUP cases not otherwise resolved using conventional testing. 473 

Importantly, despite GEP being the most commonly explored molecular test for 474 

resolving CUP, we found DNA sequencing was of potentially greater diagnostic value 475 

among CUP tumors due to many CUPS having an atypical transcriptional profile.  476 

 477 

Despite positive evidence that GEP can be diagnostically informative for CUP, cases 478 

with  poorly differentiated histopathology and atypical disease presentation remain 479 

challenging 45,46. This is perhaps not surprising given that GEP classification relies upon 480 

the expression of cellular differentiation markers that are often lost or equivocal in CUP 481 

tumors 47. Our observation that fewer CUP pass a high-medium confidence GEP 482 

classification compared to known metastatic cancers, hence have a reduced classifier 483 

performance, is supported by other studies. For instance, the CancerTYPE ID 484 
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(Biotheranostics) 92-gene test, which had extensive multisite validation, showed an 485 

overall accuracy of 85% for known cancer metastases. But in CUP, the concordance of 486 

GEP with IHC and clinicopathological evidence was lower at 75% for LP-CUP and 70% 487 

compared to the clinical picture only 7. Additionally, rare malignancies are infrequently 488 

included in the training set of TOO classifiers 6, which poses a limitation for rare entities 489 

among a cohort of CUP. More specifically, subsets of lung and biliary cancers can be 490 

problematic for GEP classifiers to resolve. For example, among lung CUPs, GEP 491 

classification was found to be concordant with a latent primary tumor in only 50% of 492 

cases 13. GEP classification accuracy can also be low for cholangiocarcinomas, as the 493 

transcriptional profile is similar to pancreatic and upper gastrointestinal neoplasms 10. 494 

Notably, some previously described GEP and DNA methylation tests have also 495 

excluded cholangiocarcinoma in their models or combined them into a 496 

pancreaticobiliary class 9,48. We found that DNA sequencing may be particularly useful 497 

in pancreaticobiliary CUPs given that gene mutations characteristic of 498 

cholangiocarcinomas can have both diagnostic and occasionally therapeutic 499 

significance, including alterations in IDH1, FGFR2, and BAP1 39-41. 500 

 501 

Integrated molecular profiling of CUP can help identify rare disease subtypes and our 502 

data supports their being some recurrent CUP entities. We identified examples of 503 

pulmonary enteric adenocarcinomas that lack TTF1 expression but can express the 504 

gastrointestinal marker CDX2 37. GEP or IHC alone could not resolve such cases, given 505 

their atypical profile; however, they still retained DNA features highly suggestive of 506 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.06.24.22276729doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.24.22276729


25 

 

NSCLC, including a tobacco mutational signature and somatic mutations in KRAS, 507 

STK11, and SMARCA4. SMARCA4-deficient lung cancers are known to lack TTF1 508 

expression 49 and are likely to be frequent in the CUP population 19,20. SMARCA4-509 

deficient lung cancer models similarly lose expression of lung differentiation markers 510 

and have a pro-metastatic behavior consistent with aggressive clinical course and poor 511 

survival outcomes in patients 50. Kidney cancers are another emerging CUP entity 512 

representing ~4-6% of CUPs 44,51,52. Four CUPs in the SUPER cohort were consistent 513 

with a primary kidney tumor. Interestingly, we found somatic mutations in NF2, FH, and 514 

BAP1 in some RCC cases. Somatic NF2 mutations are characteristic of advanced 515 

papillary renal cell tumors and those with biphasic hyalinizing psammomatous features 516 

53. Papillary carcinomas have also been found to be enriched among other Kidney-517 

CUPs 51,52 with a mutation profile similar to the Kidney-CUPs described in the SUPER 518 

cohort 54. Identifying CUP entities and recurrent therapeutic targets in these groups may 519 

help guide future CUP clinical trials. For instance, while empirical chemotherapy is 520 

ineffective in RCC, targeted therapies and ICIs are likely more efficacious 51,55. 521 

Furthermore, detection of NF2 mutations among RCC and mesothelioma could direct 522 

targeted treatment of the Hippo pathway using inhibitors of TEAD auto-palmitoylation 56, 523 

which have now entered clinical trials (NCT04665206).  524 

 525 

CUP can be classified into favorable and unfavorable prognosis groups. Given that 526 

~85% of CUPs belong to the unfavorable group, research and clinical trials directed at 527 

identifying other treatments for these patients or therapeutic responsive subsets should 528 
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be sought. Approximately 40% of T-CUPs in the SUPER cohort had potentially 529 

actionable mutations and genomic alterations, broadly consistent with other CUP 530 

profiling studies 19,20,22. As curated findings from genomic tests were returned to 531 

clinicians during the study, it is possible that the genomic data allowed site-specific 532 

treatments and access to targeted treatments, potentially explaining the improved 533 

survival outcome among the resolved compared to the unresolved T-CUP group.  534 

Alternatively, genomically resolved CUPs may be enriched for cancer types where 535 

targeted or immunotherapy treatments are available and effective.   536 

 537 

In conclusion, we have shown that DNA and RNA tests can be incorporated into a 538 

pathology assessment to improve cancer type diagnosis, identify CUP subtypes, and 539 

direct treatments. Rather than replacing traditional histopathological analysis, molecular 540 

testing can augment conventional testing to either confirm a suspicion of primary tissue 541 

of origin or provide robust diagnostic leads that are not otherwise evident using other 542 

modalities. In practice, in cases where tissue is limited, it may be more informative to 543 

prioritize genomic testing to guide additional investigations before consuming tissue on 544 

extended IHC panels. With steady improvements in technology and reduction in the 545 

sequencing costs, more comprehensive whole-genome and transcriptome analysis will 546 

likely increase the sensitivity to detect features such as structural variants and 547 

mutational signatures that are not reliably detected by panel sequencing 57. Recent 548 

studies have also utilized machine-learning for classification based on genome-wide 549 

patterns of somatic mutations that are not otherwise interpretable by human curation 550 
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58,59 and combined DNA and RNA features 60 to improve the TOO prediction accuracy 551 

further (60-91% and 94%, respectively). Although molecular testing is not currently 552 

recommended in most CUP guidelines, careful prospective evaluation of these tests 553 

may justify their cost, helping to resolve cancer type in a significant fraction of CUP 554 

cases as well as direct treatments that will ultimately translate to better outcomes for 555 

patients. 556 

 557 

 558 

Figure legends 559 

Figure 1: Gene expression profiling (GEP) tissue of origin classification of known 560 

metastatic cancers and SUPER cancer of unknown primary (CUP) tumors. A) 561 

NanoString GEP classifier was tested on 188 known origin metastatic tumors with 562 

confusion matrix showing concordance of tissue of origin prediction and known cancer 563 

type. B) GEP classifier tested on latent primary/histology resolved (LP/HR)-CUPs 564 

showing concordance between the likely tissue of origin and the predicted cancer type. 565 

LP/HR-CUPs representing cancer types that were not represented in the classifier 566 

model were removed from analysis C) Fraction of cases within confidence probability 567 

score grouping contrasting classification of true-CUPs (T-CUP) and LP/HR-CUPs 568 

combined with known metastatic tumors (unclassified <0.5, low ≥ 0.5 and ≤ 0.7 medium 569 

confidence ≥ 0.8 and ≤ 0.9, high confidence = 1). D) GEP cancer class predictions of all 570 

T-CUPs with high-medium confidence predictions.  571 

 572 
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Figure 2: DNA mutational profiling of the SUPER cancer of unknown primary (CUP) 573 

cohort. Oncoplot shows somatic mutations in CUPs in descending order of frequency. 574 

Genes and mutational features colored in red are actionable and targeted in the 575 

CUPISCO trial. The proportion of mutations in the SUPER CUPs was compared with 576 

the AACR GENIE CUP cohort (right-hand bar plot). The left-hand plot of the variant 577 

allele frequency (VAF) distribution per gene. The top bar plot shows the number of 578 

coding mutations per sample. Annotations include OncoTree class for true-CUPs (T-579 

CUP) or the assigned tumor class for latent primary/histology resolved (LP/HR)-CUPs, 580 

detection of COSMIC mutational signatures (V2): smoking signature, ultra-violet (UV) 581 

signature, DNA mismatch repair signature, oncoviruses: Human papillomavirus 16 582 

(HPV16) and Epstein-Barr virus (EBV), and tumor mutation burden (TMB) status: High 583 

>10 mutations/Mb or Low <10 mutations/Mb. 584 

 585 

Figure 3: Identification of diagnostically useful DNA features using AACR Project 586 

GENIE mutation data and summary of evidence used to support tissue of origin (TOO) 587 

diagnosis among SUPER cancer of unknown primary (CUP) cases. A) Volcano plot 588 

showing significantly mutated features by cancer types using GENIE pan-caner cohort. 589 

All genes are plotted for all cancers using a Fisher's exact test to calculate adjusted p-590 

values and odds ratio (OR) (significance threshold adjusted p-value < 0.05 and OR >1). 591 

B) Proportion and number of cases where each genomic feature supported a putative 592 

TOO for true-CUPs (T-CUP) and latent primary/histology resolved (LP/HR)-CUPs. 593 

Genomic features included single nucleotide variants (SNV), Gene expression profiling 594 
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(GEP), mutational signatures, oncoviral sequences, and copy number amplifications 595 

(CNA). C) OncoTree cancer classification of T-CUPs before and after genomic analysis. 596 

CUPs were either resolved to a putative TOO, had reduced occult diagnosis, or 597 

remained T-CUP. D) Proportion of cases where DNA and/or GEP classification 598 

supported TOO diagnosis among T-CUPs. E) Detailed summary of supportive genomic 599 

features and IHC staining used to assign a putative TOO for all genomically resolved T-600 

CUPs. NGS= Next generation sequencing. 601 

 602 

Figure 4: A comparison of overall survival outcome among SUPER CUP patients based 603 

on clinical and diagnostic groups A) Proportion and number of true-CUPs (T-CUP) and 604 

latent primary/histology resolved (LP/HR)-CUPs classified by European Society of 605 

Medical Oncology (ESMO) favorable and unfavorable prognosis groups. B) Kaplan-606 

Meier curve of overall survival (OS) in unfavorable and favorable CUP types. Censored 607 

at 12 months and significance using log-rank p-values. C-D) Log-rank test and 608 

multivariable Cox-proportional hazard model of SUPER CUP clinical and diagnostic 609 

group. Data censored at 12 months and significance using log-rank p values for Kaplan-610 

Meier analysis. Cox-proportional hazard model including covariates of ECOG, age (>60 611 

or <60), ESMO favorable and unfavorable outcome categories, and patient sex. GR = 612 

genomically resolved T-CUPs, U= unfavorable type, F= favorable type, HR= hazard 613 

ratio, CI= confidence interval. 614 

 615 

 616 
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 617 

Table 1. Study cohort characteristics  

Characteristics  Count  Proportion  

Total cohort 215  100%  

  
 

  

Age mean (range)  61 (20-86)     
  

    

Sex 
 

  

Male 89  41% 

Female  107  49%  

Unrecorded  19  9%  

  
 

   

ECOG        

0  67  31%  

1  101 47%  

2  24  11%  

3  1  0.5%  

Not determined 22  10%  

         

Previous cancer diagnosis 58 27%  

         

ESMO Outcome      

Favourable  31  14%  

Unfavourable  176  82%  

Not determined 8  4%  

     

Gene Expression Profile  191  89%  

NanoString  172  80%  

CUPguide  19  9%  
DNA sequencing  201  93%  

Both molecular tests* 177 82% 

*DNA sequencing and GEP performed 
successfully 
  618 
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